Learning to Sprint:

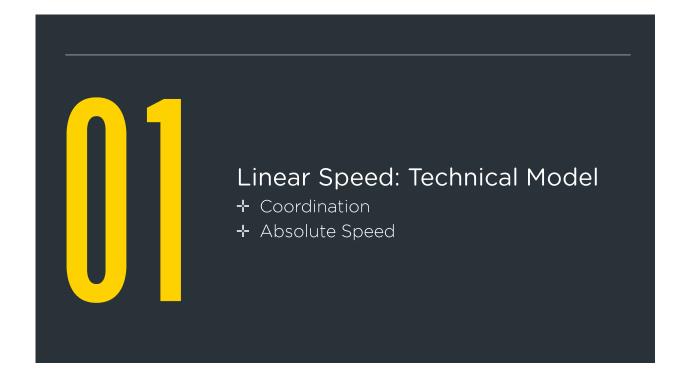
The Art of Coaching Meets the Science of Motor Learning

Nick Winkelman, MSc, CSCS

Director of Movement (Coach)

EXOS_m

Thank You



EXOS_{TM}

OBJECTIVES

- + Discuss a technical model for sprinting from a dynamic systems perspective
- + Discuss an error model for sprinting from a dynamic systems perspective
- + Discuss a constrain-based coaching model with emphasis placed on instruction/feedback and practice design

EXOS. © 2014 Athletes' Performance, Inc. 3

Technical Model: Coordination

co·or·di·na·tion:

Patterning of head, body, and limb movements relative to the patterning of environmental objects and events (Turvey, 1990)

Coordination: Dynamic Systems

- Describes the control of coordinated movement that emphasizes the role of information in the environment and dynamic properties of the body/limbs
- Views the process of human motor control as a complex system that behaves like any complex biological or physical system
- + Concerned with identifying laws (natural and physical) that govern changes in human coordination patterns

EXOS.

© 2014 Athletes' Performance, Ir

7

Coordination: Dynamic Systems

- + Attractor State (Motor Program Equivalent):
 - A preferred behavioral state that is said to be stable or homeostatic
 - Occurs and can change in response to *constraints* within the human system, environment and/or task
- + Self-Organization:
 - Spontaneous expression of a motor skill in response to specific tasks, environment conditions and biological capabilities (Attractor State)

EXOS

© 2014 Athletes' Performance, In

Dynamic Systems: Sprint Considerations

+ Biological:

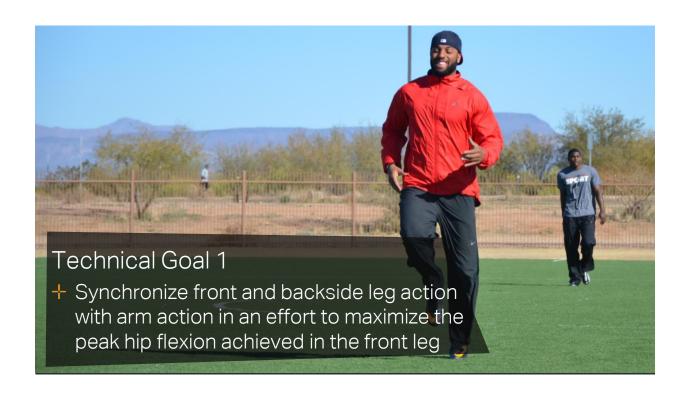
- Anatomy and Genetics
- Mobility, Stability, Strength, Speed-Strength, and Speed

+ Task:

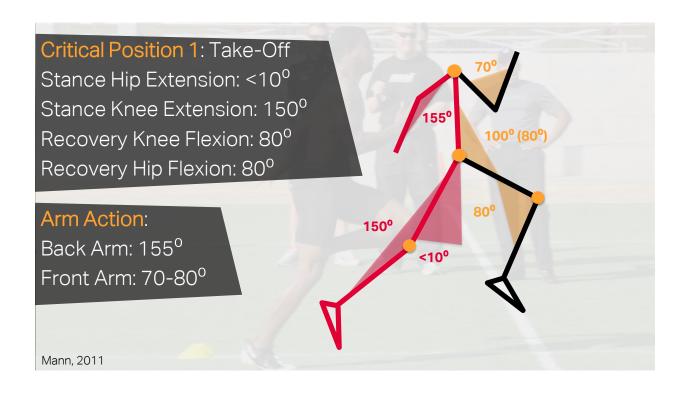
- High speed linear running
- Decision making and reaction

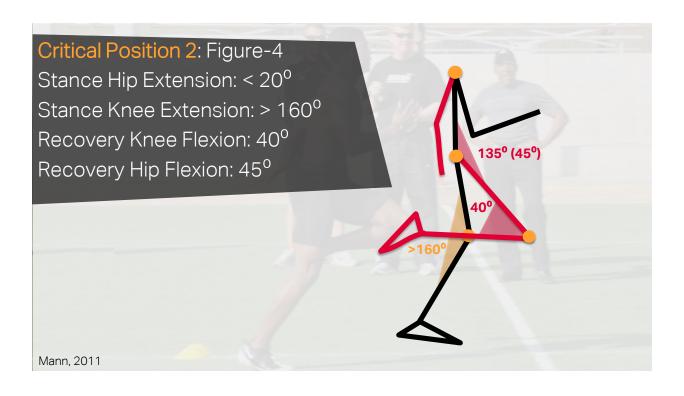
+ Environment:

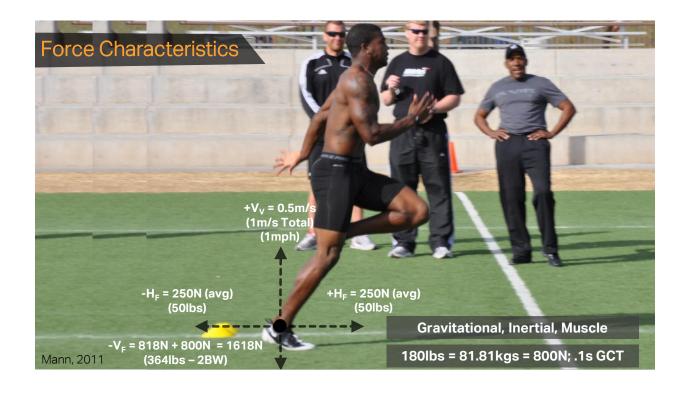
- Surface: Field, Court, or Track
- Gravity as a constant

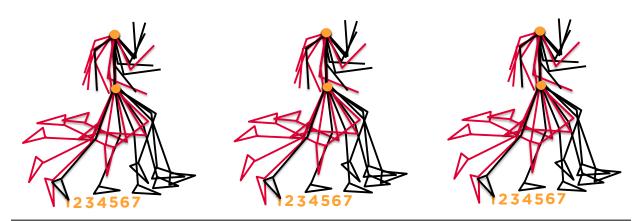

EXOS.

© 2014 Athletes' Performance, li

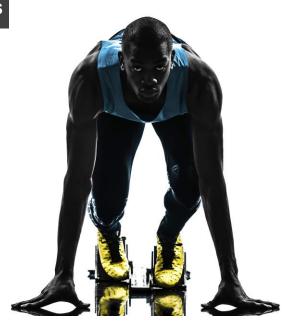

٥


Technical Model: Absolute Speed





Characteristics:


- + Frequency: 4.4-5 contacts/sec + Grd. Time: .087-.11s
- Length: 2.8-2.9yds
 + Flt. Time: .123-.127s

Mann, 2011

Linear Speed: Error Model

- + Attractor States
- → Absolute Speed

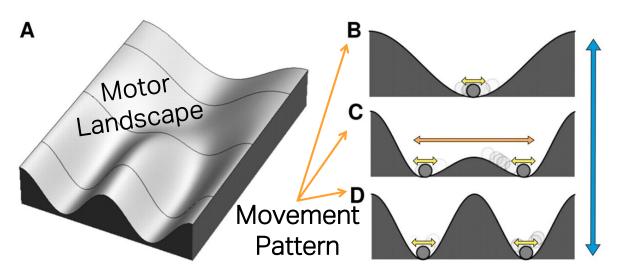
Error Model: Attractor States

Attractor States

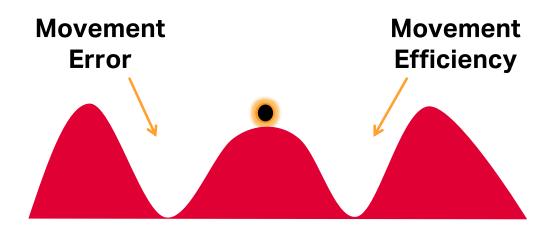
+ Attractor:

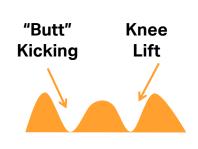
 A stable state of the motor control system that leads to behavior according to preferred coordination patterns

+ Characteristics of an attractor:

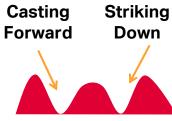

- Identified by order parameters (e.g., relative phase)
- Control parameters (e.g., speed) influence order parameters
- Minimum trial-to-trial performance variability
- Stability Retains present state despite perturbation
- Energy efficient

EXOS

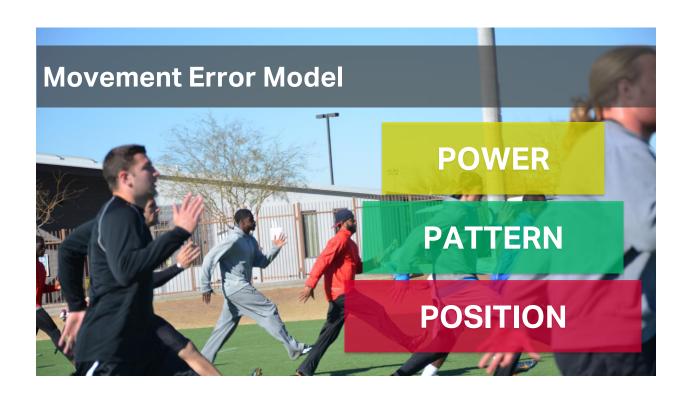

© 2014 Athletes' Performance, I


1

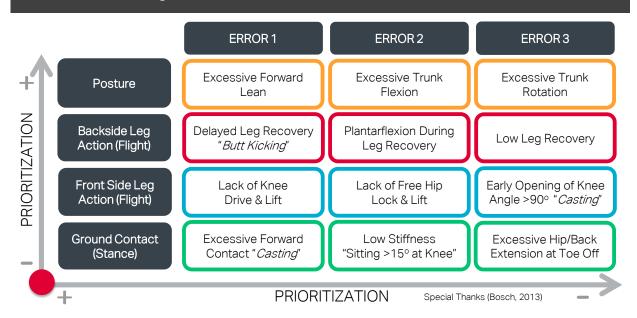
Attractor States



Attractors and Movement



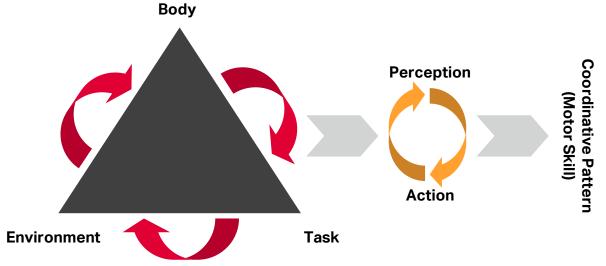
EXOS


© 2014 Athletes' Performance, Inc

Error Model: Absolute Speed

Absolute Speed Error Model

Influencing Attractor States


- + The use of variability is critical to guide the motor system from a non-functional "stable state" to a functional "stable state"
- + Drills can be designed to constrain or restrict an error, which allows for the possibility of a new movement pattern

Influencing Attractors

"Errors must become unstable for efficiency to emerge"

Self-Organization (Constraint-Based) Model

"The optimal pattern of coordination is determined by the interaction among constraints specified by the person, the environment, and the task" (Newell, 1986)

Adapted From: Davids, K., Button, C., and Bennett, S., 2008

Body Constraints

Position

Athletes ability to attain proper stability and mobility relative to the movements being performed

Pattern

Athletes ability to coordinate the limbs of the body relative to task and environment constraints

Power

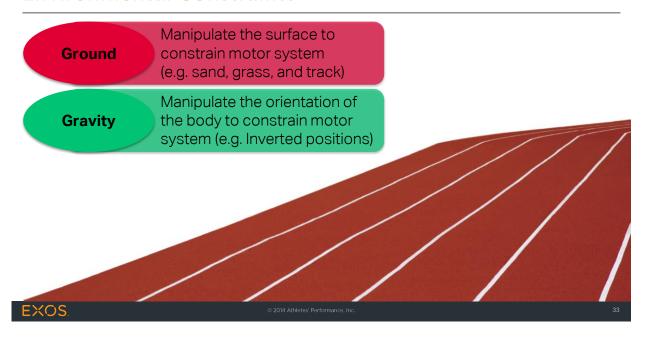
Athletes ability to express the appropriate strength qualities relative to the movements being performed

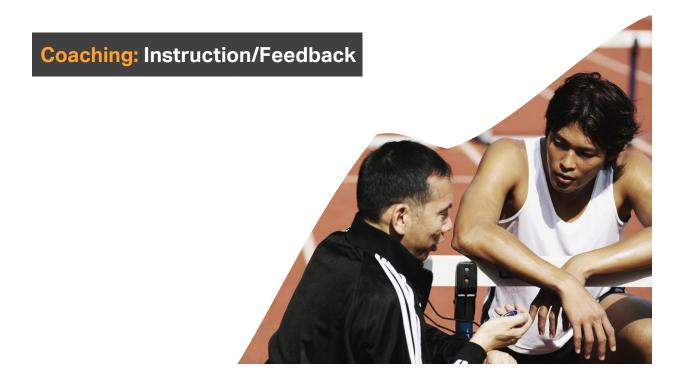
EXOS

Task Constraints

Spatial

Manipulate the amount of space the movement can be performed in (e.g. Hurdle Distances)


Temporal


Manipulate the amount of time the movement can be performed in (e.g. jump mat or athletes racing)

Rules/ **Equipment** Change the rules to constrain choices and/or introduce equipment to constrain the movement options

EXOS

Environmental Constraints

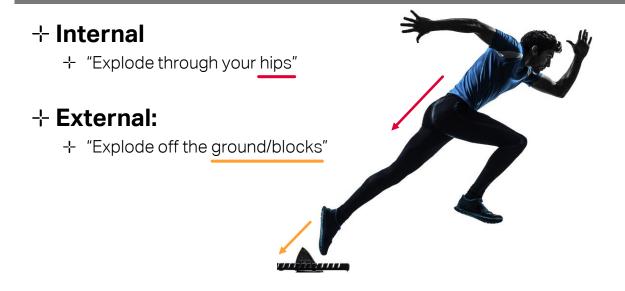
Verbal Instruction

- + Provide 1-2 focus cues to build awareness
- + Limit unnecessary information ("Over-Coaching")
- + Start and finish instruction with what you want versus what you don't want
- + Focus attention externally on the outcomes opposed to internally on the body process

EXOS

© 2014 Athletes' Performance, Ir

35


Verbal Instruction: Cueing

- + Internal Cueing: Focused on "Body Movement"
 - Joint reference: "Squeeze your shoulder blades"
 - Muscle reference: "Squeeze your glutes"
- + External Cueing: Focused on "Movement Outcome"
 - Environment reference: "Explode off the ground"
 - Outcome reference: "Jump as high as you can"

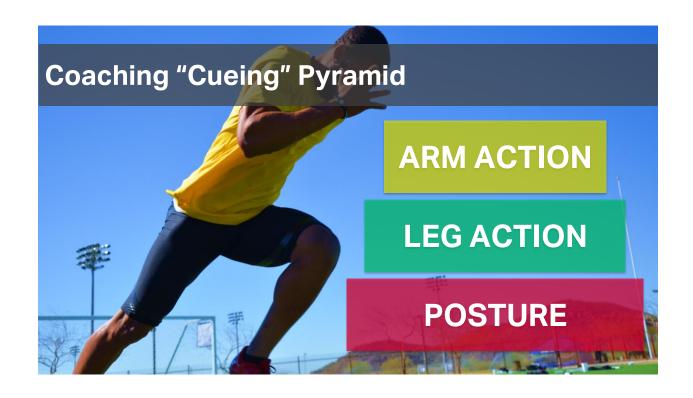
EXOS

© 2014 Athletes' Performance, In

Internal vs. External Cueing Applied to Sprinting

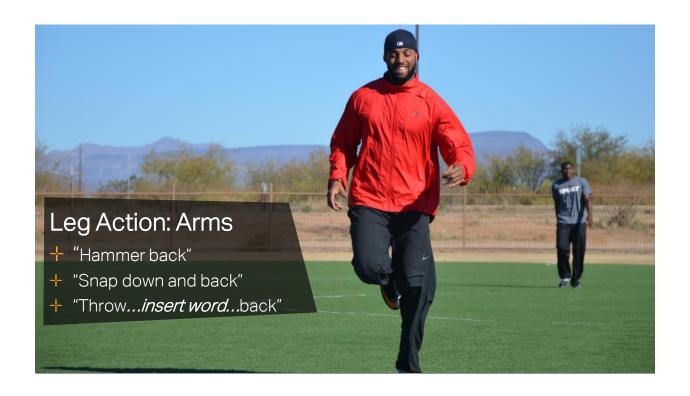
16 Years of research has shown that internal focus constrains the motor system, while external focus allows the motor system to self-organize efficiently to improve performance

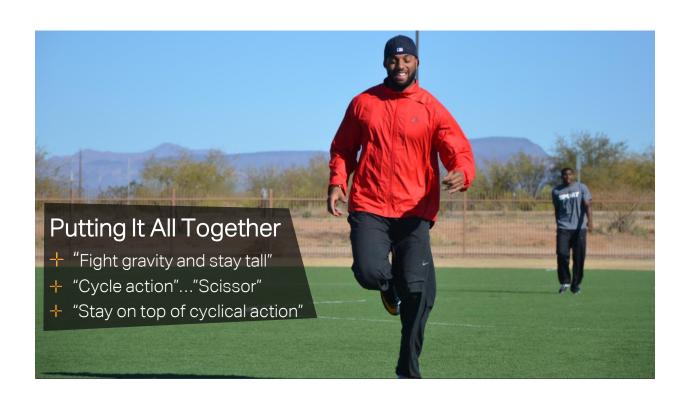
(Wulf, 2012)


Instructional Coaching Model

"Cues should be mapped to desired biomechanics based on prioritized error"

Cueing Model: Absolute Speed





In Sum:

- + Instruction should guide not prescribe
- + Provide feedback on outcomes over process
- + Say the most with the least
- + Ask a question before you provide an answer
- → What you want vs. what you don't want

EXOS

© 2014 Athletes' Performance, In

47

Coaching: Practice Design

Practice Design

+ Goal

- Optimize learning and retention in an effort to reach maximum transfer to the sporting environment

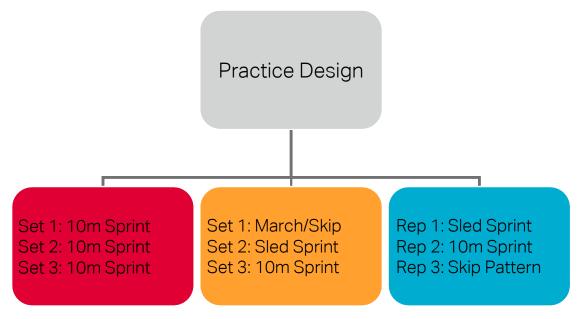
+ Key Terms

- Practice Variability
- Contextual Interference
- Differential Learning

EXOS

🛭 2014 Athletes' Performance, Ir

49

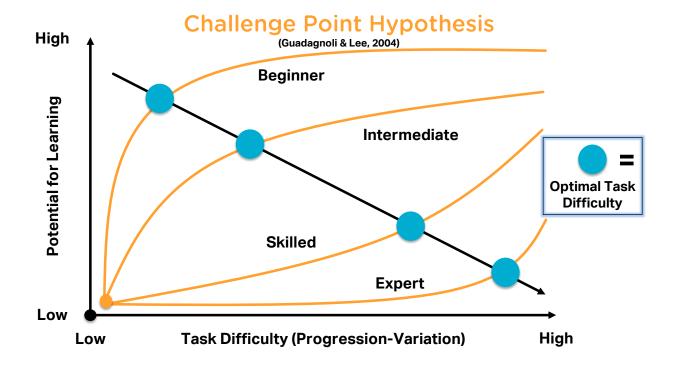

Practice Design

- + Practice Variability:
 - The variety of movement and context characteristics a person experiences while practicing a skill
- + Contextual Interference (CI):
 - The memory and performance disruption that results from performing multiple skills or variations within the context of practice
- → Contextual Interference Effect (Battig, 1979):
 - Learning benefit from performing multiple skills in a high CI practice schedule (i.e. Random), rather than skills in a low CI practice schedule (i.e. Blocked)

EXOS

© 2014 Athletes' Performance, Ir

Contextual Interference Applied



Differential Learning

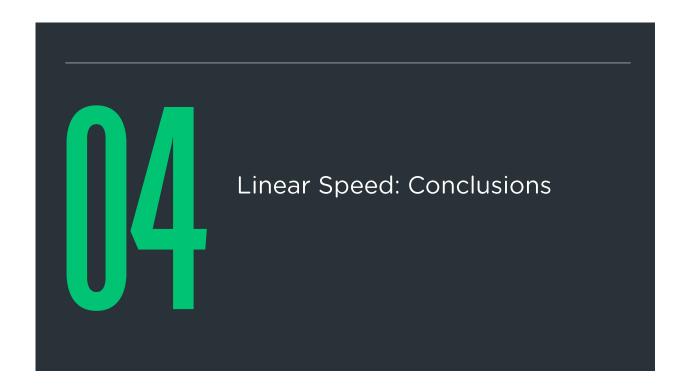
- + Schöllhorn introduced differential training to improve skill acquisition
- + Differential training:
 - "noise" (random irrelevant movements) is introduced during practice of a target skill
- + Differential training induces continuous changes in movement executions by avoiding repetitions, removing corrective instructions and emphasizing discovery practice
 - Positive benefits of differential training (e.g. shot putting, soccer skills, basketball, hurdles, speed skating, and skiing)

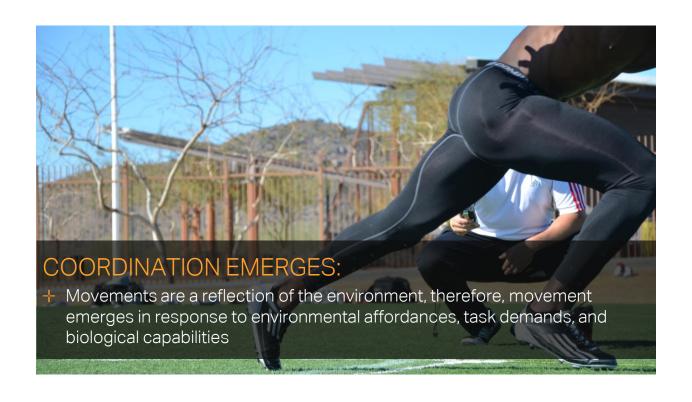
EXOS

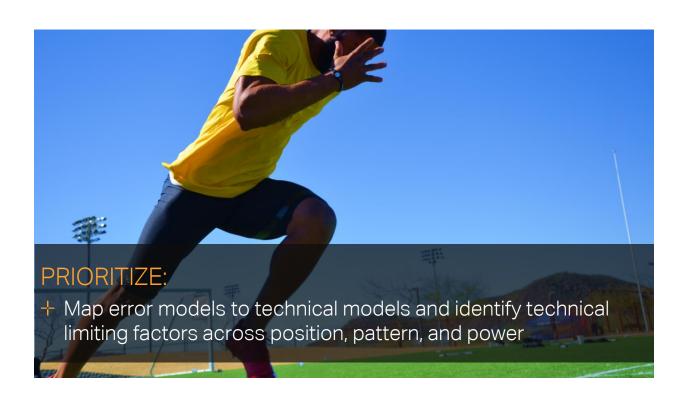
© 2014 Athletes' Performance, In

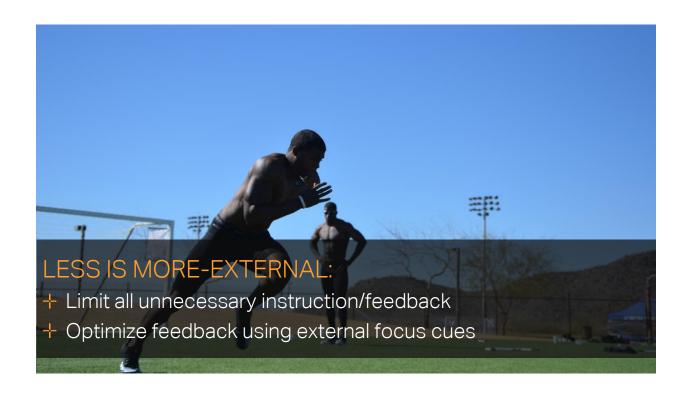
Fitts and Posner 3-Stage Model

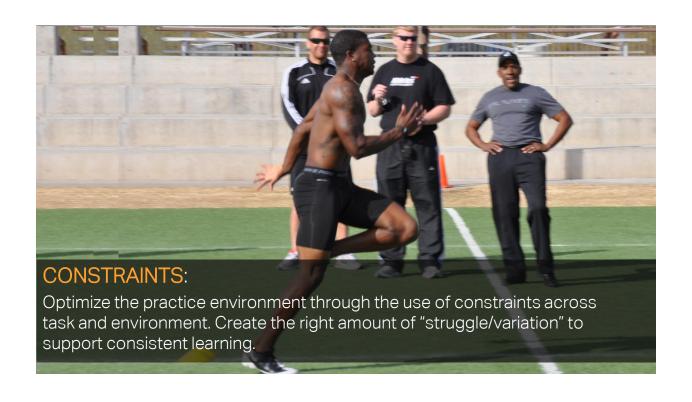
• Subconscious/Auto Identify Objectives · Associate with Cues · Self-talk/Questioning • Refining/Consistent • Multiple Tasks † Errors/Variability • ↓ Errors/Variability • \\\ Errors/Variability Instruction/Feedback Identify/Correct Errors ↑↑ Identify/Correct Error **AUTONOMOUS ASSOCIATIVE COGNITIVE STAGE STAGE** STAGE **Practice Timeline**

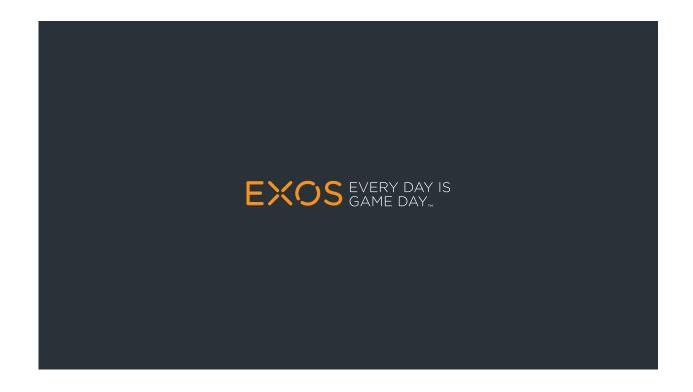

(Fitts and Posner, 1967, Davids et al., 2008, and Magill, 2011)


In Sum:


- + Drills create context for athlete understanding
- + Drills should create affordances that allow optimal technical changes to emerge
- + Drills should be self-limiting, which allows errors to become variable to change


"Let the drill do the talking and the athlete do the walking"


EXOS. © 2014 Athletes' Performance, Inc. 55


Get Certified

https://exoslearn.ideafit.com/

REFERENCES: SPRINTING

- + Blazevich, A. J. (2013). Sports biomechanics: the basics: optimising human performance. A&C Black.
- + Bosch, F., & Klomp, R. (2005). Running: Biomechanics and exercise physiology in practice. Elsevier Churchill Livingstone.
- + Brown, T.D., Vescovi, J.D., & Jaci, L.V. (2004). Assessment of Linear Sprinting Performance: A Theoretical Paradigm. *J Sports Sci Med, 3*, 203-210.
- + Cottle, C. A., Carlson, L. A., & Lawrence, M. A. (2014). Effects of Sled Towing on Sprint Starts. The *Journal of Strength & Conditioning Research*, 28(5), 1241-1245.
- + Cronin, J., & Hansen, K. T. (2006). Resisted sprint training for the acceleration phase of sprinting. *Strength & Conditioning Journal*, 28(4), 42-51.
- + Huang, L., Liu, Y., Wei, S., Li, L., Fu, W., Sun, Y., & Feng, Y. (2013). Segment-interaction and its relevance to the control of movement during sprinting. *Journal of biomechanics*, *46*(12), 2018-2023.
- + Krzysztof, M., & Mero, A. (2013). A Kinematics Analysis Of Three Best 100 M Performances Ever. *Journal of human kinetics*, 36(1), 149-160.
- + Kugler, F., & Janshen, L. (2010). Body position determines propulsive forces in accelerated running. *Journal of biomechanics*, 43(2), 343-348.
- + Mann, R. (2011). The mechanics of sprinting and hurdling. CreateSpace.
- + Mero, A., Komi, P. V., & Gregor, R. J. (1992). Biomechanics of sprint running. Sports Medicine, 13(6), 376-392.

EXOS

© 2014 Athletes' Performance, Ir

ŝ4

REFERENCES: SPRINTING

- + Mero, A., & Komi, P. V. (1986). Force-, EMG-, and elasticity-velocity relationships at submaximal, maximal and supramaximal running speeds in sprinters. Eur J Appl Physiol Occup Physiol, 55(5), 553-561.
- + Morin, J. B., Bourdin, M., Edouard, P., Peyrot, N., Samozino, P., & Lacour, J. R. (2012). Mechanical determinants of 100-m sprint running performance. *European journal of applied physiology*, 112(11), 3921-3930.
- + Thompson, A., Bezodis, I. N., & Jones, R. L. (2009). An in-depth assessment of expert sprint coaches' technical knowledge. *J Sports Sci, 27*(8), 855-861.
- → Weyand, P. G., Sternlight, D. B., Bellizzi, M. J., & Wright, S. (2000). Faster top running speeds are achieved with greater ground forces not more rapid leg movements. *Journal of applied physiology*, 89(5), 1991-1999.
- ⊹ Weyand, P. G., Sandell, R. F., Prime, D. N., & Bundle, M. W. (2010). The biological limits to running speed are imposed from the ground up. *Journal of applied physiology*, 108(4), 950-961.
- Weyand, P. G., & Davis, J. A. (2005). Running performance has a structural basis. *Journal of Experimental biology, 208*(14), 2625-2631.
- → Winkelman, N. (2009). A model of periodisation: Optimising performance and recovery in the elite 100m sprinter. Professional Strength and Conditioning, 13, 14-18.

EXOS

2014 Athletes' Performance, Ir

6

REFERENCES: COACHING

- + Anson, G., Elliott, D., & Davids, K. (2005). Information processing and constraints-based views of skill acquisition: divergent or complementary?. MOTOR CONTROL-CHAMPAIGN-, 9(3), 217.
- + Battig, W. F. (1979). The flexibility of human memory. Levels of processing and human memory, Lawrence Erlbaum Associates, Hillsdale, NJ, 23-44.
- + Bernstein, N. A. (1967). The control and regulation of movements. London: Pergamon Press, 10, 11.
- + Bernstein, N. A. (1996). Dexterity and its development. Psychology Press.
- + Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: an FMRI study with expert dancers. *Cerebral cortex*, *15*(8), 1243-1249.
- + Davids, K., Button, C., & Bennett, S. (2008). Dynamics of skill acquisition: A constraints-led approach. Human Kinetics.
- + Fabbri-Destro, M., & Rizzolatti, G. (2008). Mirror neurons and mirror systems in monkeys and humans. *Physiology, 23*(3), 171-179. Fitts, P. M., & Posner, M. I. (1967). Human performance.
- + Guadagnoli, M. A., & Lee, T. D. (2004). Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. *Journal of motor behavior*, 36(2), 212-224.
- + Hodges, N. J., & Williams, A. M. (2012). Skill acquisition in sport: research, theory and practice. London; New York: Routledge.
- + Huber, J. (2012). Applying educational psychology in coaching athletes. Champaign, IL: Human Kinetics.
- 🛨 💮 Ille, A., Selin, I., Do, M. C., & Thon, B. (2013). Attentional focus effects on sprint start performance as a function of skill level. J Sports Sci.

EXOS

© 2014 Athletes' Performance, In

REFERENCES: COACHING

- 🛨 Jones, R. L. (2006). The sports coach as educator : reconceptualising sports coaching. Abingdon, Oxon ; New York: Routledge.
- + Kelso, J. S. (1984). Phase transitions and critical behavior in human bimanual coordination. Am J Physiol, 246(6 Pt 2), R1000-R1004.
- + Kelso, J. S., & Schöner, G. (1988). Self-organization of coordinative movement patterns. Human Movement Science, 7(1), 27-46.
- + Magill, R. A., & Anderson, D. I. (2013). Motor learning and control: Concepts and applications. New York: McGraw-Hill.
- + Newell, K. M. (1986). Constraints on the development of coordination. *Motor development in children: Aspects of coordination and control, 34,* 341-360.
- + Porter, J. M. (2008). Systematically increasing contextual interference is beneficial for learning novel motor skills (Doctoral dissertation, Louisiana state university).
- + Porter, J. M., & Saemi, E. (2010). Moderately Skilled Learners Benefit by Practicing with Systematic Increases in Contextual Interference. *International Journal of Coaching Science*, 4(2).
- + Porter, J., Wu, W., & Partridge, J. (2010). Focus of Attention and Verbal Instructions: Strategies of Elite Track and Field Coaches and Athletes (Vol. XIX, pp. 77).
- + Porter, J. M., Anton, P. M., & Wu, W. F. (2012). Increasing the Distance of an External Focus of Attention Enhances Standing Long Jump Performance. Journal of Strength & Conditioning Research, 26(9), 2389-2393.
- + Porter, J. M., Wu, W.F.W., Crossley, R.M., & Knopp, S.W. (in Press). Adopting an External Focus of Attention Improves Sprinting Performance. Manuscript Submitted for Publication.
- + Renshaw, I., Davids, K., & Savelsbergh, G. J. (Eds.). (2010). Motor learning in practice: a constraints-led approach. Routledge.
- + Salmoni, A. W., Schmidt, R. A., & Walter, C. B. (1984). Knowledge of results and motor learning: a review and critical reappraisal. *Psychological bulletin*, *95*(3), 355.

EXOS

© 2014 Athletes' Performance, In

67

REFERENCES: COACHING

- + Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological review, 82(4), 225.
- Schmidt, R. A. (1991). Frequent augmented feedback can degrade learning: Evidence and interpretations. In *Tutorials in motor neuroscience* (pp. 59-75). Springer Netherlands.
- + Schmidt, R. A. (2008). Motor learning and performance: a situation-based learning approach. Human Kinetics.
- + Schmidt, R., & Lee, T. (2013). Motor Learning and Performance, 5E With Web Study Guide: From Principles to Application. Human Kinetics.
- + Shapiro, D. C., Zernicke, R. F., Gregor, R. J., & Diestel, J. D. (1981). Evidence for generalized motor programs using gait pattern analysis. *Journal of motor behavior*, 13(1), 33-47.
- + Shollhorn, W., Beckmann, H., Janssen, D., and Drepper, J. (2010). Stochastic perturbations in athletics field events enhance skill acquisition.
- + Thelen, E., Kelso, J. A., & Fogel, A. (1987). Self-organizing systems and infant motor development. Developmental Review, 7(1), 39-65.
- + Turvey, M. T. (1990). Coordination. *American psychologist*, 45(8), 938.
- + Williams, A. M., & Hodges, N. J. (2011). Skill Acquisition In Sport: Research, Theory and Practice. Routledge.
- Winkelman, N. (2013). Applied Motor Learning: "What We Say Matters" (Part I). http://www.nsca.com/ContentTemplates/PublicationArticleDetail.aspx?id=2147486591
- + Winkelman, N. (2013). Applied Motor Learning: "What We Say Matters" (Part II).
- http://www.nsca.com/ContentTemplates/PublicationArticleDetail.aspx?id=2147486592
- + Wulf, G., Höß, M., & Prinz, W. (1998). Instructions for motor learning: Differential effects of internal versus external focus of attention. *Journal of motor behavior*, 30(2), 169-179.
- → Wulf, G., Mcconnel, N., Gärtner, M., & Schwarz, A. (2002). Enhancing the learning of sport skills through external-focus feedback. *Journal of motor behavior*, 34(2), 171-182.
- + Wulf, G. (2007). Attention and motor skill learning. Human Kinetics.
- + Wulf, G. (2007). Self-controlled practice enhances motor learning: implications for physiotherapy. Physiotherapy, 93(2), 96-101.
- + Wulf, G. (2012). Attentional focus and motor learning: a review of 15 years. International Review of Sport and Exercise Psychology, 1-28.

FXOS

© 2014 Athletes' Performance, In-